

Physical Properties

Thickness 0.203 mm (0.008 in.)

Length 81.3 mm (3.20 in.)**

Width 55.9 mm (2.20 in.)

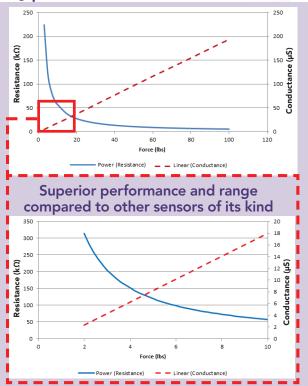
Sensing Area 50.8 mm x 50.8 mm (2 in. x 2 in.)

Connector 2-pin Male Square Pin

Substrate Polyester

Pin Spacing 2.54 mm (0.1 in.)

Benefits

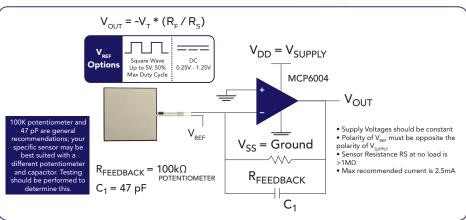

- Thin and flexible
- Low-power
- Ideal for prototyping and integration
- Easy to use

- * Sensor will require an adapter/extender to connect to the ELF System. Contact your Tekscan representative for assistance.
- ** Length does not include pins. Please add approximately 6 mm (0.25 in.) for pin length for a total length of approximately 87 mm (3.4 in).

Typical Performance

Force (lbs)	Resistance (kΩ)	Conductance (µS)
20	34.36	29.11
40	17.14	58.33
60	11.57	86.41
80	8.71	114.76
100	6.97	143.54
	(lbs) 20 40 60 80	(lbs) (kΩ) 20 34.36 40 17.14 60 11.57 80 8.71

- Sensor acceptance criteria ±40% of nominal
- Sensor resistance measured 20 seconds after applied load
- Sensor loaded through a polycarbonate puck equal to 68% (2.72 in²) of total active area
- Sensor was not attached to any drive circuitry


Standard Force Ranges as Tested with Circuit Shown

222 N (0 - 50 lb) †

 † This sensor can measure up to 44,448 N (10,000 lb). In order to measure higher forces, apply a lower drive voltage (-0.5 V, -0.25 V, etc.) and reduce the resistance of the feedback resistor (1k Ω min.) To measure lower forces, apply a higher drive voltage and increase the resistance of the feedback resistor.

Sensor output is a function of many variables, including interface materials. Therefore, Tekscan recommends the user calibrate each sensor for the application.

Recommended Circuit

	Typical Performance	Evaluation Conditions
Linearity (Error)	< ±3% of full scale	Line drawn from 0 to 50% load
Repeatability	< ±2.5%	Conditioned sensor, 80% of full force applied
Hysteresis	< 4.5% of full scale	Conditioned sensor, 80% of full force applied
Drift	< 5% per logarithmic time scale	Constant load of 111 N (25 lb)
Response Time	< 5µsec	Impact load, output recorded on oscilloscope
Operating Temperature	-40°C - 60°C (-40°F - 140°F)	Convection and conduction heat sources

All data above was collected utilizing an Op Amp Circuit. If your application cannot allow an Op Amp Circuit, visit www.tekscan.com/flexiforce-integration-guides, or contact a FlexiForce Applications Engineer.

Force reading change per degree of temperature change = 0.36%/°C (±0.2%/°F).

PURCHASE TODAY ONLINE AT WWW.TEKSCAN.COM/STORE

©Tekscan Inc., 2018. All rights reserved. Tekscan, the Tekscan logo, and FlexiForce are trademarks or registered trademarks of Tekscan, Inc